An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

نویسندگان

  • Qihang Lin
  • Zhaosong Lu
  • Lin Xiao
چکیده

We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achieves faster linear convergence rates than existing randomized proximal coordinate gradient methods. Without strong convexity, our method enjoys accelerated sublinear convergence rates. We show how to apply the APCG method to solve the regularized empirical risk minimization (ERM) problem, and devise efficient implementations that avoid full-dimensional vector operations. For ill-conditioned ERM problems, our method obtains improved convergence rates than the state-of-the-art stochastic dual coordinate ascent (SDCA) method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Accelerated Randomized Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achiev...

متن کامل

An Accelerated Proximal Coordinate Gradient Method

We develop an accelerated randomized proximal coordinate gradient (APCG) method, for solving a broad class of composite convex optimization problems. In particular, our method achieves faster linear convergence rates for minimizing strongly convex functions than existing randomized proximal coordinate gradient methods. We show how to apply the APCG method to solve the dual of the regularized em...

متن کامل

Distributed Accelerated Proximal Coordinate Gradient Methods

We develop a general accelerated proximal coordinate descent algorithm in distributed settings (DisAPCG) for the optimization problem that minimizes the sum of two convex functions: the first part f is smooth with a gradient oracle, and the other one Ψ is separable with respect to blocks of coordinate and has a simple known structure (e.g., L1 norm). Our algorithm gets new accelerated convergen...

متن کامل

Accelerated Mini-batch Randomized Block Coordinate Descent Method

We consider regularized empirical risk minimization problems. In particular, we minimize the sum of a smooth empirical risk function and a nonsmooth regularization function. When the regularization function is block separable, we can solve the minimization problems in a randomized block coordinate descent (RBCD) manner. Existing RBCD methods usually decrease the objective value by exploiting th...

متن کامل

Stochastic Proximal Gradient Descent with Acceleration Techniques

Proximal gradient descent (PGD) and stochastic proximal gradient descent (SPGD) are popular methods for solving regularized risk minimization problems in machine learning and statistics. In this paper, we propose and analyze an accelerated variant of these methods in the mini-batch setting. This method incorporates two acceleration techniques: one is Nesterov’s acceleration method, and the othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014